3.76 \(\int \frac{\sin ^5(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=221 \[ -\frac{157 \sin ^2(c+d x) \cos (c+d x)}{80 a^2 d \sqrt{a \sin (c+d x)+a}}+\frac{787 \cos (c+d x) \sqrt{a \sin (c+d x)+a}}{240 a^3 d}-\frac{1729 \cos (c+d x)}{120 a^2 d \sqrt{a \sin (c+d x)+a}}+\frac{283 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{\sin ^4(c+d x) \cos (c+d x)}{4 d (a \sin (c+d x)+a)^{5/2}}+\frac{21 \sin ^3(c+d x) \cos (c+d x)}{16 a d (a \sin (c+d x)+a)^{3/2}} \]

[Out]

(283*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) + (Cos[c + d*x
]*Sin[c + d*x]^4)/(4*d*(a + a*Sin[c + d*x])^(5/2)) + (21*Cos[c + d*x]*Sin[c + d*x]^3)/(16*a*d*(a + a*Sin[c + d
*x])^(3/2)) - (1729*Cos[c + d*x])/(120*a^2*d*Sqrt[a + a*Sin[c + d*x]]) - (157*Cos[c + d*x]*Sin[c + d*x]^2)/(80
*a^2*d*Sqrt[a + a*Sin[c + d*x]]) + (787*Cos[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/(240*a^3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.521103, antiderivative size = 221, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.348, Rules used = {2765, 2977, 2983, 2968, 3023, 2751, 2649, 206} \[ -\frac{157 \sin ^2(c+d x) \cos (c+d x)}{80 a^2 d \sqrt{a \sin (c+d x)+a}}+\frac{787 \cos (c+d x) \sqrt{a \sin (c+d x)+a}}{240 a^3 d}-\frac{1729 \cos (c+d x)}{120 a^2 d \sqrt{a \sin (c+d x)+a}}+\frac{283 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{\sin ^4(c+d x) \cos (c+d x)}{4 d (a \sin (c+d x)+a)^{5/2}}+\frac{21 \sin ^3(c+d x) \cos (c+d x)}{16 a d (a \sin (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]^5/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(283*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) + (Cos[c + d*x
]*Sin[c + d*x]^4)/(4*d*(a + a*Sin[c + d*x])^(5/2)) + (21*Cos[c + d*x]*Sin[c + d*x]^3)/(16*a*d*(a + a*Sin[c + d
*x])^(3/2)) - (1729*Cos[c + d*x])/(120*a^2*d*Sqrt[a + a*Sin[c + d*x]]) - (157*Cos[c + d*x]*Sin[c + d*x]^2)/(80
*a^2*d*Sqrt[a + a*Sin[c + d*x]]) + (787*Cos[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/(240*a^3*d)

Rule 2765

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[((b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2983

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(B*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(f*(
m + n + 1)), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*b*c*(
m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && (I
ntegerQ[n] || EqQ[m + 1/2, 0])

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sin ^5(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx &=\frac{\cos (c+d x) \sin ^4(c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}-\frac{\int \frac{\sin ^3(c+d x) \left (4 a-\frac{13}{2} a \sin (c+d x)\right )}{(a+a \sin (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=\frac{\cos (c+d x) \sin ^4(c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}+\frac{21 \cos (c+d x) \sin ^3(c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}-\frac{\int \frac{\sin ^2(c+d x) \left (\frac{63 a^2}{2}-\frac{157}{4} a^2 \sin (c+d x)\right )}{\sqrt{a+a \sin (c+d x)}} \, dx}{8 a^4}\\ &=\frac{\cos (c+d x) \sin ^4(c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}+\frac{21 \cos (c+d x) \sin ^3(c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}-\frac{157 \cos (c+d x) \sin ^2(c+d x)}{80 a^2 d \sqrt{a+a \sin (c+d x)}}-\frac{\int \frac{\sin (c+d x) \left (-\frac{157 a^3}{2}+\frac{787}{8} a^3 \sin (c+d x)\right )}{\sqrt{a+a \sin (c+d x)}} \, dx}{20 a^5}\\ &=\frac{\cos (c+d x) \sin ^4(c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}+\frac{21 \cos (c+d x) \sin ^3(c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}-\frac{157 \cos (c+d x) \sin ^2(c+d x)}{80 a^2 d \sqrt{a+a \sin (c+d x)}}-\frac{\int \frac{-\frac{157}{2} a^3 \sin (c+d x)+\frac{787}{8} a^3 \sin ^2(c+d x)}{\sqrt{a+a \sin (c+d x)}} \, dx}{20 a^5}\\ &=\frac{\cos (c+d x) \sin ^4(c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}+\frac{21 \cos (c+d x) \sin ^3(c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}-\frac{157 \cos (c+d x) \sin ^2(c+d x)}{80 a^2 d \sqrt{a+a \sin (c+d x)}}+\frac{787 \cos (c+d x) \sqrt{a+a \sin (c+d x)}}{240 a^3 d}-\frac{\int \frac{\frac{787 a^4}{16}-\frac{1729}{8} a^4 \sin (c+d x)}{\sqrt{a+a \sin (c+d x)}} \, dx}{30 a^6}\\ &=\frac{\cos (c+d x) \sin ^4(c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}+\frac{21 \cos (c+d x) \sin ^3(c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}-\frac{1729 \cos (c+d x)}{120 a^2 d \sqrt{a+a \sin (c+d x)}}-\frac{157 \cos (c+d x) \sin ^2(c+d x)}{80 a^2 d \sqrt{a+a \sin (c+d x)}}+\frac{787 \cos (c+d x) \sqrt{a+a \sin (c+d x)}}{240 a^3 d}-\frac{283 \int \frac{1}{\sqrt{a+a \sin (c+d x)}} \, dx}{32 a^2}\\ &=\frac{\cos (c+d x) \sin ^4(c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}+\frac{21 \cos (c+d x) \sin ^3(c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}-\frac{1729 \cos (c+d x)}{120 a^2 d \sqrt{a+a \sin (c+d x)}}-\frac{157 \cos (c+d x) \sin ^2(c+d x)}{80 a^2 d \sqrt{a+a \sin (c+d x)}}+\frac{787 \cos (c+d x) \sqrt{a+a \sin (c+d x)}}{240 a^3 d}+\frac{283 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{16 a^2 d}\\ &=\frac{283 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a+a \sin (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{\cos (c+d x) \sin ^4(c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}+\frac{21 \cos (c+d x) \sin ^3(c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}-\frac{1729 \cos (c+d x)}{120 a^2 d \sqrt{a+a \sin (c+d x)}}-\frac{157 \cos (c+d x) \sin ^2(c+d x)}{80 a^2 d \sqrt{a+a \sin (c+d x)}}+\frac{787 \cos (c+d x) \sqrt{a+a \sin (c+d x)}}{240 a^3 d}\\ \end{align*}

Mathematica [C]  time = 0.566465, size = 221, normalized size = 1. \[ -\frac{\left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right ) \left (-2547 \sin \left (\frac{1}{2} (c+d x)\right )+3603 \sin \left (\frac{3}{2} (c+d x)\right )+872 \sin \left (\frac{5}{2} (c+d x)\right )+52 \sin \left (\frac{7}{2} (c+d x)\right )-12 \sin \left (\frac{9}{2} (c+d x)\right )+2547 \cos \left (\frac{1}{2} (c+d x)\right )+3603 \cos \left (\frac{3}{2} (c+d x)\right )-872 \cos \left (\frac{5}{2} (c+d x)\right )+52 \cos \left (\frac{7}{2} (c+d x)\right )+12 \cos \left (\frac{9}{2} (c+d x)\right )+(8490+8490 i) (-1)^{3/4} \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^4 \tanh ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac{1}{4} (c+d x)\right )-1\right )\right )\right )}{480 d (a (\sin (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[c + d*x]^5/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

-((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])*(2547*Cos[(c + d*x)/2] + 3603*Cos[(3*(c + d*x))/2] - 872*Cos[(5*(c + d
*x))/2] + 52*Cos[(7*(c + d*x))/2] + 12*Cos[(9*(c + d*x))/2] - 2547*Sin[(c + d*x)/2] + (8490 + 8490*I)*(-1)^(3/
4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x)/4])]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^4 + 3603*Sin[
(3*(c + d*x))/2] + 872*Sin[(5*(c + d*x))/2] + 52*Sin[(7*(c + d*x))/2] - 12*Sin[(9*(c + d*x))/2]))/(480*d*(a*(1
 + Sin[c + d*x]))^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.783, size = 323, normalized size = 1.5 \begin{align*} -{\frac{1}{ \left ( 480+480\,\sin \left ( dx+c \right ) \right ) \cos \left ( dx+c \right ) d} \left ( \sin \left ( dx+c \right ) \left ( 384\, \left ( a-a\sin \left ( dx+c \right ) \right ) ^{5/2}\sqrt{a}+640\, \left ( a-a\sin \left ( dx+c \right ) \right ) ^{3/2}{a}^{3/2}+7680\,\sqrt{a-a\sin \left ( dx+c \right ) }{a}^{5/2}-8490\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ){a}^{3} \right ) + \left ( -192\, \left ( a-a\sin \left ( dx+c \right ) \right ) ^{5/2}\sqrt{a}-320\, \left ( a-a\sin \left ( dx+c \right ) \right ) ^{3/2}{a}^{3/2}-3840\,\sqrt{a-a\sin \left ( dx+c \right ) }{a}^{5/2}+4245\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ){a}^{3} \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}+384\, \left ( a-a\sin \left ( dx+c \right ) \right ) ^{5/2}\sqrt{a}-470\, \left ( a-a\sin \left ( dx+c \right ) \right ) ^{3/2}{a}^{3/2}+9780\,\sqrt{a-a\sin \left ( dx+c \right ) }{a}^{5/2}-8490\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ){a}^{3} \right ) \sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) }{a}^{-{\frac{11}{2}}}{\frac{1}{\sqrt{a+a\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)^5/(a+a*sin(d*x+c))^(5/2),x)

[Out]

-1/480/a^(11/2)*(sin(d*x+c)*(384*(a-a*sin(d*x+c))^(5/2)*a^(1/2)+640*(a-a*sin(d*x+c))^(3/2)*a^(3/2)+7680*(a-a*s
in(d*x+c))^(1/2)*a^(5/2)-8490*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^3)+(-192*(a-a*sin(
d*x+c))^(5/2)*a^(1/2)-320*(a-a*sin(d*x+c))^(3/2)*a^(3/2)-3840*(a-a*sin(d*x+c))^(1/2)*a^(5/2)+4245*2^(1/2)*arct
anh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^3)*cos(d*x+c)^2+384*(a-a*sin(d*x+c))^(5/2)*a^(1/2)-470*(a-a*
sin(d*x+c))^(3/2)*a^(3/2)+9780*(a-a*sin(d*x+c))^(1/2)*a^(5/2)-8490*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*
2^(1/2)/a^(1/2))*a^3)*(-a*(sin(d*x+c)-1))^(1/2)/(1+sin(d*x+c))/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (d x + c\right )^{5}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^5/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)^5/(a*sin(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.87799, size = 1041, normalized size = 4.71 \begin{align*} \frac{4245 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) - 4\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 4\right )} \sqrt{a} \log \left (-\frac{a \cos \left (d x + c\right )^{2} + 2 \, \sqrt{2} \sqrt{a \sin \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )} + 3 \, a \cos \left (d x + c\right ) -{\left (a \cos \left (d x + c\right ) - 2 \, a\right )} \sin \left (d x + c\right ) + 2 \, a}{\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right ) + 4 \,{\left (96 \, \cos \left (d x + c\right )^{5} + 256 \, \cos \left (d x + c\right )^{4} - 1760 \, \cos \left (d x + c\right )^{3} + 2475 \, \cos \left (d x + c\right )^{2} -{\left (96 \, \cos \left (d x + c\right )^{4} - 160 \, \cos \left (d x + c\right )^{3} - 1920 \, \cos \left (d x + c\right )^{2} - 4395 \, \cos \left (d x + c\right ) - 60\right )} \sin \left (d x + c\right ) + 4335 \, \cos \left (d x + c\right ) - 60\right )} \sqrt{a \sin \left (d x + c\right ) + a}}{960 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} - 2 \, a^{3} d \cos \left (d x + c\right ) - 4 \, a^{3} d +{\left (a^{3} d \cos \left (d x + c\right )^{2} - 2 \, a^{3} d \cos \left (d x + c\right ) - 4 \, a^{3} d\right )} \sin \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^5/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/960*(4245*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + (cos(d*x + c)^2 - 2*cos(d*x + c) - 4)*sin(d*x + c) -
2*cos(d*x + c) - 4)*sqrt(a)*log(-(a*cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*sqrt(a)*(cos(d*x + c)
- sin(d*x + c) + 1) + 3*a*cos(d*x + c) - (a*cos(d*x + c) - 2*a)*sin(d*x + c) + 2*a)/(cos(d*x + c)^2 - (cos(d*x
 + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2)) + 4*(96*cos(d*x + c)^5 + 256*cos(d*x + c)^4 - 1760*cos(d*x + c)^3
 + 2475*cos(d*x + c)^2 - (96*cos(d*x + c)^4 - 160*cos(d*x + c)^3 - 1920*cos(d*x + c)^2 - 4395*cos(d*x + c) - 6
0)*sin(d*x + c) + 4335*cos(d*x + c) - 60)*sqrt(a*sin(d*x + c) + a))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x +
c)^2 - 2*a^3*d*cos(d*x + c) - 4*a^3*d + (a^3*d*cos(d*x + c)^2 - 2*a^3*d*cos(d*x + c) - 4*a^3*d)*sin(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)**5/(a+a*sin(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^5/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

sage2